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Chapter 13

LINEAR ANALYSIS OF SPLIT
AND FACTORED FORMS

13.1 Introduction

In Section 4.5 we introduced the concept of the representative equation, and used
it in Chapter 7 to study the stability. accuracy, and convergence properties of time-
marching schemes. The question is: Can we find a similar equation that will allow
us to evaluate the stability and convergence properties of split and factored schemes?
The answer is yes — for certain forms of linear model equations.

The analysis in this chapter is useful for estimating the stability and steady-state
properties of a wide variety of time-marching schemes that are variously referred
to as time-split, fractional-step, hybrid, and (approximately) factored. When these
methods are applied to practical problems, the results found from this analysis are
neither necessary nor sufficient to guarantee stability. However, if the results indicate
that a method has an instability, the method is probably not suitable for practical
use.

13.2 The Representative Equation for Circulant
Operators

Consider linear PDE’s with coefficients that are fixed in both space and time and with
boundary conditions that are periodic. We have seen that under these conditions
a semi-discrete approach can lead to circulant matrix difference operators, and we
discussed circulant eigensystems' in Section 4.4. In this and the following section

1See also the discussion on Fourier stability analysis in Section 7.7.
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210 CHAPTER 13. LINEAR ANALYSIS OF SPLIT AND FACTORED FORMS

we assume circulant systems and our analysis depends critically on the fact that all
circulant matrices commute and have a common set of eigenvectors.
Suppose, as a result of space differencing the PDE. we arrive at a set of ODE’s
that can be written
d’[z — — e
o= A u+Au— f(t) (13.1)
where the subscript p denotes a circulant matrix. Since both matrices have the same

set of eigenvectors, we can use the arguments made in Section 4.3.3 to uncouple the
set and form the M set of independent equations

wy = (Aa A+ o)ywr = ga(t)

~

Wy = (Aa 4 X)W = (1)

wﬁw = ()\a + )\b)MwM — gM(t) (132)
The analytic solution of the m’th line is
W, (1) = cpeatint L p g

Note that each )\, pairs with one, and only one?, \; since they must share a common
eigenvector. This suggests (see Section 4.5:

The representative equation for split, circulant systems is

d
d—? = [Ma+ X+ A+ Ju+ ae (13.3)
where A\, + Ay + Ao + - -+ are the sum of the eigenvalues in A, , A, , A_, --- that

C
share the same eigenvector.

13.3 Example Analysis of Circulant Systems

13.3.1 Stability Comparisons of Time-Split Methods

Consider as an example the linear convection-diffusion equation:

b ou_ o
ot —I_a@;z; _l/azz:2

2This is to be contrasted to the developments found later in the analysis of 2-D equations.

(13.4)
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If the space differencing takes the form

du a - v -
—=———B,(-1.0.1 —B,(1.-2.1 13.5
i Az p(—=1,0,1)u + A2 (1, =2, 1)u ( )

the convection matrix operator and the diffusion matrix operator, can be represented
by the eigenvalues A, and A4, respectively, where (see Section 4.4.2):

1a

(Xe),, = Esm@
4v . 50
(Xa),, = N (13.6)
In these equations 6,, =2mx/M . m =0, 1, --- , M —1 ,so that 0 <4, < 2r.

Using these values and the representative equatlon 13 4, we can analyze the stability
of the two forms of simple time-splitting discussed in Sectlon 12.2. In this section we
refer to these as

1. the explicit-implicit Euler method, Eq. 12.10.

2. the explicit-explicit Euler method, Eq. 12.8.

1. The Explicit-Implicit Method
When applied to Eq. 13.4, the characteristic polynomial of this method is
P(E)=(1—=hX)E —(14+h\,)
This leads to the principal o root
1+ i% sin 6,,
hv 5 O

sin” —

Azx? 2

where we have made use of Eq. 13.6 to quantify the eigenvalues. Now introduce the

1+4

dimensionless numbers

C, = ah . Courant number
AACL’

Ran = a=r . mesh Reynolds number
v

and we can write for the absolute value of ¢

\/1—|—C’721sin2(9m
lo| = ., 0<46,<2rx (13.7)

Ch 0.,
1+4B—A SIH2 7
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A simple numerical parametric study of Eq. 13.7 shows that the critical range of
0., for any combination of C,, and Ra occurs when 6,, is near 0 (or 27). From this
we find that the condition on C, and Ra that make |o| ~ 1 is

C €1?
2.2 ] _ n o 2¢
14 C}sin 6]—[1+4 Ast
As € — 0 this gives the stability region

2
Cn < ——
<RA

which is bounded by a hyperbola and shown in Fig. 13.1.

’-/. 2

Ra B - Ra
(a) - (b}

Figure 13.1: Stability Regions For Some Factored Methods.

2. The Explicit-Explicit Method

An analysis similar to the one given above shows that this method produces

Cn . 50,
lo| = /14 C2sin?0,, |1 —4—"sin* | ., 0<40, <2«
Ra 2
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Again a simple numerical parametric study shows that this has two critical ranges
of 8,,. one near 0. which yields the same result as in the previous example, and the
other near 180°, which produces the constraint that

1
C, < SBA for Ra <2

This bound is also shown in Fig. 13.1 forming the straight line through the origin.
The totaly explicit, factored method has a much smaller region of stability when Ra
is small, as we should have expected.

13.3.2 Analysis of a Second-Order Time-Split Method

Next let us analyze a more practical method that has been used in serious compu-
tational analysis of turbulent flows. This method applies to a flow in which there is
a combination of diffusion and periodic convection. The convection term is treated
explicitly using the second-order Adams-Bashforth method. The diffusion term is
integrated implicitly using the trapezoidal method. Our model equation is again the
linear convection-diffusion equation 13.4 which we split in the fashion of Eq. 13.5. In
order to evaluate the accuracy. as well as the stability, we include the forcing func-
tion in the representative equation and study the effect of our hybrid, time-marching
method on the equation

u = Mo+ gu + ae”’

First let us find expressions for the two polynomials, P(F) and Q(F). The char-
acteristic polynomial follows from the application of the method to the homogeneous
equation, thus

1 1
Upy1 = Uy + §h)\c(3un - un—l) + §h)\d(un+1 + un)

This produces

3
2
The form of the particular polynomial depends upon whether the forcing function is
carried by the AB2 method or by the trapezoidal method. In the former case it is

P(E)=(1 - %hxd)EQ (14 2h 4 %h)\d)E n %mc

1
QF) = §h(3E -1) (13.8)
and in the latter

Q(E) = %h(EQ + E) (13.9)
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Accuracy

From the characteristic polynomial we see that there are two o-roots and they are
given by the equation

3
2

SISt i\/<1—|—§h)\ S )2 20\ (1 lm)
c 2 d 2 c 2 d < c 2 d

i
2(1— Zh\
< 2 d)

The principal o-root follows from the plus sign and one can show

14
(13.10)

1 1
o1 =14 (e + M)k + 5 (0 + Aa)?h? + Z(Af; D Y L

From this equation it is clear that é)\3 = é()\c + A4)? does not match the coefficient
of h? in o4, so

ery = O(h?)

Using P(e"") and Q(e*") to evaluate er, in Section 6.5.3, one can show
er, = O(h?)

using either Eq. 13.8 or Eq. 13.9. These results show that, for the model equation,
the hybrid method retains the second-order accuracy of its individual components.

Stability

The stability of the method can be found from Eq. 13.10 by a parametric study of ¢,
and R defined in Eq. 13.7. This was carried out in a manner similar to that used
to construct Fig. 13.1a. The results are plotted in Fig. 13.1b. For values of Ra > 2
this second-order method has a much greater region of stability than the first-order
explicit-implicit method given by Eq. 12.10 and shown in Fig. 13.1.

13.4 The Representative Equation for Space-Split
2-D Operators

Consider the 2-D model® equations

ou 0*u  0%u

a = W + 8—y2 (13.11)

3The extension of the following to 3-D is simple and straightforward.
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and

Ou Ou Ou

Reduce either of these, by means of spatial differencing approximations, to the coupled

set of ODE’s: iU
T = A+ AU (be)

for the space vector U. The form of the A, and A, matrices for three-point central
differencing schemes are shown in Eqs. 12.22 and 12.23 for the 3 x 4 mesh shown
in Sketch 12.12. Let us inspect the structure of these matrices closely to see how we
can diagonalize [A,; + A,] in terms of the individual eigenvalues of the two matrices
considered separately.
First we write these matrices in the form
B bo-1 b1
Ale) = Al = {?)1-1 bo - 1 ?)1-]]

T

B

by 1 by 1

B

where B is a banded matrix of the form B(b_1, by, b1). Now find the block eigenvector
matrix that diagonalizes B and use it to diagonalize A, Thus

X! B X A

X! B

X! B

where

As
A4

Notice that the matrix A(yf) is transparent to this transformation. That is, if we

set X = diag(X)

bo I b bo I b1
X_l b_l'] Nbo'] {)1] X: b_l'] Nbo'] {)1]
by 1 bo-1 b_y-1 bo-1

One now permutes the transformed system to the y-vector data-base using the per-
mutation matrix defined by Eq. 12.13. There results

Py X7HAD + AD|X - Py, =
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AT B

where B is the banded tridiagonal matrix B(?)_l, bo. Z)l)? see the bottom of Eq. 12.23.
Next find the eigenvectors X that diagonalize the B blocks. Let B = diag(B) and

X = diag(X) and form the second transformation

A 5
o i S
X7'BX = T i : Y
4 & )\3

-
Il

This time, by the same argument as before, the first matrix on the right side of
Eq. 13.13 is transparent to the transformation, so the final result is the complete
diagonalization of the matrix 4,4,

M+ A
Mol + A

+y

Xtop x| [a8))[X - Py X] = N
5T + 1

M + A
It is important to notice that:

e The diagonal matrix on the right side of Eq. 13.13 contains every possible com-
bination of the individual eigenvalues of B and B.

Now we are ready to present the representative equation for two dimensional
systems. First reduce the PDE to ODE by some choice? of space differencing. This
results in a spatially split A matrix formed from the subsets

AP = diag(B) . Al = diag(B) (13.13)

where B and B are any two matrices that have linearly independent eigenvectors (this
puts some constraints on the choice of differencing schemes).

Although A, and A, do commute, this fact, by itself, does not ensure the prop-
erty of “all possible combinations”. To obtain the latter property the structure of

*We have used 3-point central differencing in our example, but this choice was for convenience
only, and its use i1s not necessary to arrive at Eq. 13.13.
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the matrices is important. The block matrices B and B can be either circulant or
noncirculant; in both cases we are led to the final result:

The 2-D representative equation for model linear systems is

du
i e+ A Ju + aet?

where A, and )\, are any combination of eigenvalues from A, and A,. a and p are
(possibly complex) constants, and where A, and A, satisfy the conditions in 13.13.

Often we are interested in finding the value of, and the convergence rate to, the
steady-state solution of the representative equation. In that case we set g = 0 and
use the simpler form

d
d—? = [ + A Ju+a (13.14)

which has the exact solution

a

t) = (Az+Ay)t -
u(t) = ce + T,

(13.15)

13.5 Example Analysis of 2-D Model Equations

In the following we analyze four different methods for finding a fixed. steady-state
solution to the 2-D representative equation 13.13. In each case we examine

1. The stability.
2. The accuracy of the fixed, steady-state solution.

3. The convergence rate to reach the steady-state.

13.5.1 The Unfactored Implicit Euler Method

Consider first this unfactored, first-order scheme which can then be used as a reference
case for comparison with the various factored ones. The form of the method is given
by Eq. 12.19. and when it is applied to the representative equation, we find

(1 —hX—hA)Uppr = u, + ha
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from which

P(E) = (1—hX —h))E—1
Q(E) = h (13.16)

giving the solution

B 1 " a
TG R
Like its counterpart in the 1-D case, this method:
1. Is unconditionally stable.

2. Produces the exact (see Eq. 13.15) steady-state solution (of the ODE) for any
h.

3. Converges very rapidly to the steady-state when h is large.

Unfortunately, however, use of this method for 2-D problems is generally impractical
for reasons discussed in Section 12.5.

13.5.2 The Factored Nondelta Form of the Implicit Euler
Method

Now apply the factored Euler method given by Eq. 12.20 to the 2-D representative
equation. There results

(1 =hA)(1 —=hA)Ups1 = u, + ha
from which

P(E) = (1—hX)(1—hX)E—1
Q(E) = h (13.17)

giving the solution

1 a
U, = C —

(T—hA)(I—hA)] At Ay — hAoA,

We see that this method:

1. Is unconditionally stable.
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2. Produces a steady state solution that depends on the choice of h.

3. Converges rapidly to a steady-state for large h, but the converged solution would
be completely wrong.

The method is easy to put on a computer and demands very little storage. However,
it is not very useful since its transient solution is only first-order accurate and, if
one tries to take advantage of its rapid convergence rate, the converged value is
meaningless.

13.5.3 The Factored Delta Form of the Implicit Euler Method

Next apply Eq. 12.30 to the 2-D representative equation. One finds
(T =hA)(1 = hA) (Ung1 — up) = h(Aptupn + Ay, + a)
which reduces to
(1= hA)(1 = h A ugs = (14 AN, ), + ha

and this has the solution

- YO W a
A NS TS W) B WY

This method:
1. Is unconditionally stable.
2. Produces the exact steady-state solution for any choice of h.

3. Converges very slowly to the steady—state solution for large values of h. since
lo| — 1 as h — oc.

Like the factored nondelta form, this method is easy to put on a computer and
demands very little storage. It is a basic option in the Ames research codes ARC2D
and ARC3D, but many sophisticated numerical “tricks” have been incorporated to
speed up its convergence to rate.
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13.5.4 The Factored Delta Form of the Trapezoidal Method

Finally consider the delta form of a second-order time-accurate method. Apply Eq.
12.29 to the representative equation and one finds

1 1
(1= 520 ) (1= 5820 ) (s — ) = bt + Ayt + )

which reduces to

1 1 1 1
(1 _ 5hAI) (1 _ §h)\y)un+1 _ (1 + 51%) (1 + §h)\y) wn + ha

and this has the solution

U, = C

(1+2hA) (14 202,) ] a
(1-2ha) (1= 100 | Aty

This method:
1. Is unconditionally stable.
2. Produces the exact steady-state solution for any choice of h.

3. Converges very slowly to the steady—state solution for large values of h. since
lo| — 1 as h — oc.

All of these properties are identical to those found for the factored delta form of the
implicit Euler method. Furthermore, these two methods are equally easy to put on
a computer® and they take exactly the same amount of storage. This method is also
an option in the Ames research codes ARC2D and ARC3D. Since it is second order
in time, it is usually used when time accuracy is desired, and the factored delta form
of the implicit Euler method (with its attendent acceleration tricks) is usually used
when a converged steady-state is all that is required. A brief inspection of eqs. 12.26
and 12.27 should be enough to convince the student that the ¢’s produced by those
methods are identical to the o produced by this method.

13.6 Example Analysis of the 3-D Model Equation

The arguments in Section 13.4 generalize to three dimensions and, under the condi-
tions given in 13.13 with an A®*) included, the model 3-D cases® have the unforced

5Tn practical codes, the value of A on the left side of the implicit equation is literally switched
from h to %h.
6Eqs. 13.11 and 13.12, each with an additional term.
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representative equation

d
d—? =+ A+ NJuta (13.18)

Let us analyze a 2nd-order accurate. factored, delta form using this equation.
First apply the trapezoidal method:

s = 4 {0+ Ay 4 At + (e Ay + AJuy o+ 2]
Rearrange terms:

[1 - %h()\w T+ AZ)] Unst = [1 + %h(% + 0+ 0w + ha
Put this in delta form:

[1 _ %huﬁ 4+ AZ)] Aty = B[(A + Ay + Ay + d]
Now factor the left side:
(1 _ %h)\) (1 _ %h)\y) (1 _ %h)\) Aty = B[(d + Ay + \Jun +a]  (13.19)
This preserves second order accuracy since the error terms
ihQ(AI)\y +Ah + M) Au, and %hﬁ*/\xxy/\z

are both O(h?). One can derive the characteristic polynomial for Eq. 13.19, find the
o root, and write the solution either in the form

mn

1 1 1
1+ §h()\x + Ay X))+ th(/\g;Ay + A AN — gfzS/\I)\y)\Z

U, = C

I 1 1
L= ShO 4 A A0 F 2R 00N, + Ah + 4 ) = ZhPAA A,

a

- 13.2
WA (13.20)

or in the form

n

1 1 1 1
(1 + —hAx) (1 + —h)\y) (1 + —hAZ) — A
2 2 2 4 (13.21)

- L
(1 _ lh)\z) (1 _ lhAy) (1 _ lh/\z) A Ay + A
> > >

U, = C
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It is interesting to notice that a Taylor series expansion of Eq. 13.21 results in

1

o = 14+h(+ A+ X))+ 5200 + A, + ) (13.22)
1

TR ATE (20  200) + (20] 300, 200) 05+ 20A] + 2000, + X 4

which verifies the second order accuracy of the factored form. Furthermore, clearly,
if the method converges, it converges to the proper steady-state. ”

With regards to stability, it follows from Eq. 13.20 that, if all the \’s are real
and negative, the method is stable for all A. This makes the method unconditionally
stable for the 3-D diffusion model when it is centrally differenced in space.

Now consider what happens when we apply this method to the bicomvection
model, the 3-D form of Eq. 13.12 with periodic boundary conditions. In this case,
central differencing causes all of the A’s to be imaginary with spectrums that include
both positive and negative values. Remember that in our analysis we must consider
every possible combination of these eigenvalues. First write the o root in Eq. 13.20
in the form

1+ia—p3+1y
o= . .
1l —ta—pF+1y

where a, [ and ~ are real numbers that can have any sign. Now we can always find

one combination of the A’s for which «. and 5 are both positive. In that case since
the absolute value of the product is the product of the absolute values

| |2: (1_,3)2+(a‘|‘7)2
(=3P +(a—1)

and the method is unconditionally unstable for the model convection problem.

From the above analysis one would come to the conclusion that the method rep-
resented by Eq. 13.19 should not be used for the 3-D Euler equations. In practical
cases, however, some form of dissipation is almost always added to methods that are
used to solve the Euler equations and our experience to date is that, in the pres-

> 1

ence of this dissipation, the instability disclosed above is too weak to cause trouble.
Consequently, the method is used as the basis for the Ames research code ARC3D.

"However, we already knew this because we chose the delta form.



